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Abstract. We reanalyze the ηγ and η′γ transition form factors within the modified hard scattering approach
on the basis of new experimental data from CLEO [1] and L3 [2]. Our approach perfectly describes the
experimental data over a wide range of the virtuality of the probing photon, 1 GeV2 ≤ Q2 ≤ 15 GeV2.
The analysis provides hints that the conventional flavor octet-singlet scheme for the η-η′ mixing is too
simple. A more general mixing scheme on the other hand, involving two mixing angles, leads to a very
good description of the transition form factors and also accounts for the two-photon decay widths of the
η and η′ mesons as well as for the ratio of the widths for the J/ψ → η′γ and J/ψ → ηγ decays. We also
investigate the questions of possible deviations of the η and η′ distribution amplitudes from the asymptotic
form and of eventual intrinsic charm in the η and η′ mesons. We estimate the charm decay constant of the
η′ meson to lie within the range −65 MeV ≤ fcη′ ≤ 15 MeV.

1 Introduction

In 1995 the CLEO collaboration has presented their pre-
liminary data on pseudoscalar meson-photon transition
form factors (see Fig. 1) at large momentum transfer, Q2,
for the first time [3]. Since then these form factors at-
tracted the interest of many theoreticians, and it can be
said now that the CLEO measurement has strongly stim-
ulated the field of hard exclusive reactions. One of the ex-
citing aspects of the πγ form factor is that it possesses a
well-established asymptotic behavior [4,5], namely Fπγ →√

2fπ/Q2 where fπ(= 131 MeV) is the decay constant of
the pion1. At the upper end of the measured momentum
transfer range the CLEO data [3,1] only deviate by about
15% from that limiting value. Many theoretical papers are
devoted to the explanation of that little difference. The
perhaps most important outcome of these analyses, as far
as they are based upon perturbative approaches (see e.g.
[7–9]), is the rather precise determination of the pion’s
light-cone wave function. It turns out that the pion’s dis-
tribution amplitude, i.e. its wave function integrated over
transverse momentum, is close to the asymptotic form.
This result has far-reaching consequences for the expla-
nation of many hard exclusive reactions in which pions
participate (see, for instance, [10,11]).

The situation is much more complicated for the ηγ and
η′γ transition form factors than in the πγ case. In general
there are at least four independent wave functions associ-
ated with the η and η′ valence Fock states, since one has

1 For a critical discussion of the asymptotic behavior of Fπγ
see e.g. [6] and references therein
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Fig. 1. Meson-photon transition form factors in e+e− colli-
sions

to consider SU(3)F -singlet (octet) admixtures to the η(η′)
mesons. Moreover, on account of the U(1)A anomaly, there
is also the possibility of intrinsic charm and gluon admix-
tures. Correspondingly numerous are the decay constants
being related to the configuration space wave functions at
the origin. A full-fledged analysis of the transition form
factors, taking into account all these components of the
η and η′ mesons, is beyond feasibility. Although the re-
cent large momentum transfer data on the ηγ and η′γ
transition form factors measured by CLEO [1] and L3 [2]
allow a more refined analysis of these processes than it
was possible previously [8,12], additional phenomenologi-
cal constraints as well as simplifying assumptions on the
wave functions and the decay constants are still required.
Thus, for instance, we will use the two-photon decays of
the η and η′ mesons as a constraint. The chiral anomaly
combined with the PCAC hypothesis relates the decay
constants to the decay widths for these two processes.
Another constraint is offered by the ratio RJ/ψ of the
J/ψ → η′γ and J/ψ → ηγ decay widths, since it can
also be expressed in terms of the decay constants.

An obvious possibility to reduce the degrees of freedom
in the analysis is the use of the conventional SU(3)F octet-
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singlet mixing scheme. Leaving aside eventual gluon and
charm components, only two independent wave functions
remain thereby and, hence, only two decay constants. The
relative strength of the singlet and octet components in
the physical mesons is then controlled by the pseudoscalar
mixing angle θP . This mixing scheme has been used in
previous analyses of the ηγ, η′γ transition form factors
throughout [8,12,13]. As it will turn out from our analy-
sis of the new large momentum transfer form factor data
[1,2], that mixing scheme is inadequate; it leads to in-
consistencies with results from chiral perturbation theory
[14,15] and is in conflict with RJ/ψ. An ansatz, however,
where the four relevant wave functions are assumed to
have the same form but different values at the origin, i.e.
different decay constants, meets all requirements: It leads
to very good results for the transition form factors, the
decay widths for η(η′) → γγ and for RJ/ψ. The decay con-
stants determined in this analysis are in good agreement
with the recent results from chiral perturbation theory in
which also the conventional octet-singlet mixing scheme is
given up [16].

Another interesting problem that may be investigated
within our approach, is the significance of intrinsic charm
in the η and η′ mesons. Recently a substantial charm com-
ponent in the η′ meson has been proposed in order to ex-
plain the large branching ratio of the decay B → Kη′ [17,
18]. Since the ηγ and η′γ transition form factors at large
Q2 are sensitive to intrinsic charm, our analysis may shed
further light onto the issue of the intrinsic charm magni-
tude.

The paper is organized as follows: First we present
the proper expansion of pseudoscalar mesons in terms of
parton Fock states and discuss properties of the light-
cone wave functions associated with the light-quark va-
lence Fock states (Sect. 2). In Sect. 3 we calculate the ηγ
and η′γ transition form factors. We employ the modified
hard scattering approach (mHSA) in which the form fac-
tors are described by convolutions of perturbatively cal-
culable hard scattering amplitudes and non-perturbative
light-cone wave functions [19]. In contrast to the standard
approach (sHSA) of Brodsky and Lepage [5], the trans-
verse momenta of the partons and Sudakov suppressions
are also taken into account in the mHSA. In this section
we also discuss how to include the intrinsic charm contri-
bution to the form factors. In Sect. 4 we present numerical
results on the transition form factor obtained on the basis
of the conventional octet-singlet mixing scheme. We are
going to demonstrate that this mixing scheme seems to
be inadequate. A more general mixing scheme with two
mixing angles is discussed in Sect. 5. As it will turn out,
this scheme leads to a very good description of the tran-
sition form factors. Also several other phenomenological
constraints are satisfied within this scheme. The size of
an eventual contribution from intrinsic charm is also esti-
mated in this section. We end the paper with our conclu-
sions (Sect. 6).

2 Fock states, light-cone wave functions
and evolution

For the calculation of the transition form factors within
the mHSA we need a parton Fock state decomposition of
the mesons. Most generally, assuming isospin symmetry
to be exact, we can write (P = η, η′)

|P 〉 = Ψ8
P |uū+ dd̄− 2ss̄〉/

√
6 +

Ψ1
P |uū+ dd̄+ ss̄〉/

√
3 +

ΨgP |gg〉 + Ψ cP |cc̄〉 + . . . (1)

where the light quarks are arranged in terms of the SU(3)F
octet and singlet combinations. This choice is convenient
but not mandatory. For instance, a basis where the |uū+
dd̄〉 and |ss̄〉 parts are treated separately is a reasonable
choice, too. In (1) we also allow for gluon and charm com-
ponents that may appear due to the U(1)A anomaly. The
ellipses stand for higher Fock states with additional glu-
ons and/or qq̄ pairs. Their contributions to the transition
form factors are suppressed by powers of αs/Q2 [5], where
αs is the strong coupling constant, and will therefore be
neglected in our analysis.

Following [8,20], we write the wave functions associ-
ated with the light-quark Fock states as (i = 8, 1)

Ψ iP (x,k⊥) :=
f iP

2
√

6
φiP (x)Σi

P (k⊥/
√
xx̄) . (2)

Here, the momentum fraction x and the transverse mo-
mentum k⊥ refer to the quark; the antiquark momentum
is characterized by x̄ = 1 − x and −k⊥. The transverse
momentum part, Σi

P , of the wave function is normalized
as ∫

d2k⊥
16π3 Σ

i
P (k⊥/

√
xx̄) = 1 . (3)

f iP is the decay constant of the pseudoscalar meson P
through the Fock state i. In the hard scattering approach,
f iP is related to the value of the corresponding wave func-
tion at the origin of the configuration space∫

d2k⊥
16π3

∫ 1

0
dxΨ iP (x,k⊥) =

f iP
2
√

6
. (4)

Explicit parameterizations of the charm and gluon wave
functions are not needed in our analysis. The weak matrix
elements that define the decay constants read

〈0|J iµ5|P (p)〉 = ı f iP pµ (5)

where the axial vector currents are given by

J8
µ5 =

1√
6

(
ūγµγ5u+ d̄γµγ5d− 2 s̄γµγ5s

)
,

J1
µ5 =

1√
3

(
ūγµγ5u+ d̄γµγ5d+ s̄γµγ5s

)
. (6)

The definition of the decay constants (5) also applies to the
charm component (i = c) with the current Jcµ5 = c̄γµγ5c.
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The distribution amplitudes for the octet components
φ8
P (x) have the same expansion upon Gegenbauer polyno-

mials C(3/2)
n as the pion one [5],

φ8
P (x) = 6x x̄

{
1 +

∑
n=2,4,...

B8
Pn(µF ) C(3/2)

n (2x− 1)

}
.

(7)

The non-perturbative expansion coefficients evolve with
the factorization scale µF (∝ Q2) as

B8
Pn(µF ) = B8

Pn(µ0)
{
αs(µF )
αs(µ0)

}γn

. (8)

Here, µ0 is a typical hadronic scale of reference for which
we choose a value of 0.5 GeV. Since the anomalous dimen-
sions γn are positive fractional numbers increasing with
n, all distribution amplitudes evolve into φAS(x) = 6x x̄
asymptotically. Rather similar forms of the octet and pion
distribution amplitudes are to be expected from symmetry
considerations. Since, to a very good approximation, the
latter distribution amplitude equals the asymptotic form2

this should be the case for φ8
P , too. To deal with eventual

small deviations from the asymptotic form it is sufficient
to consider only the first non-trivial contribution B8

P2 6= 0
with C(3/2)

2 (z) = 3/2 (5 z2 − 1) and γ2 = 50/81.
In the singlet case evolution is more complicated. The

evolution equation involves an anomalous dimension ma-
trix which mixes the singlet and the two-gluon distribution
amplitudes. In [21] the eigenfunctions and eigenvalues of
the evolution equation have been calculated. The results
for three flavors read

φ1
P (x) = 6xx̄

{
1 +

∑
n=2,4,...

[
B1
Pn(µF ) + ρgnB

g
Pn(µF )

]
× C(3/2)

n (2x− 1)
}

φgP (x) = (x x̄)2
∑

n=2,4,...

[
ρ1
nB

1
Pn(µF ) +BgPn(µF )

]
× C

(5/2)
n−1 (2x− 1) . (9)

The indices 1 and g on the r.h.s. of this equation charac-
terize the two eigenfunctions. A common factor f1

P /2
√

6
is pulled out of both the distribution amplitudes, see (2).
Since only Gegenbauer polynomials C(5/2)

n of odd order
contribute to the the gluon distribution amplitude it pos-
sesses the properties φgP (x) = −φgP (x̄) and

∫ 1
0 φ

g
P (x) dx =

0 while φiP (x) = φiP (x̄) and
∫ 1
0 φ

i
P (x) dx = 1 for the light

quarks. The interesting point is that once φ1
P is deter-

mined, say from experiment, the corresponding gluon dis-
tribution amplitude is, in principle, fixed by evolution.
This situation is quite similar to the one in deep inelas-
tic lepton-hadron scattering. In particular, if φ1

P = φAS

2 For comparison, within the modified HSA [7], a fit of Bπ2

to the CLEO data on the πγ transition form factor [1] yields
a value of −0.02 ± 0.1 at the scale µ0

Fig. 2. Feynman graphs that determine the leading order hard
scattering amplitude

then φgP = 0. For the case n = 2 we quote the numeri-
cal values of the anomalous dimensions γ1,g

n , controlling
the evolution of the singlet and gluon distribution am-
plitudes analogue to (8), and the coefficients ρ1,g

n in the
eigenfunctions that are induced by the gluon/quark ad-
mixtures (C(5/2)

1 (z) = 5 z):

γ1
2 = 0.59 ρ1

2 = 1.42
γg2 = 1.24 ρg2 = −0.025 . (10)

Finally, following [8,20,22], the transverse shape of the
wave function is chosen to be a simple Gaussian (i = 1, 8)

Σi
P (k⊥/

√
xx̄) =

16π2 (aiP )2

x x̄
exp

[
− (aiP )2 k2

⊥
x x̄

]
. (11)

In the case of the pion the transverse size parameter aπ is
fixed through the constraint [22]∫

dx Ψπ(x, 0) =
√

6/fπ . (12)

That relation leads to the closed formula a−2
π = (1 +

Bπ2(µF )) 8π2 f2
π under the assumption Bπn = 0 for n > 2.

For the asymptotic distribution amplitude one obtains
aπ = 0.86 GeV−1 corresponding to a r.m.s. transverse mo-
mentum of 370 MeV. For simplicity, we assume aiP = aπ,
i = 1, 8 throughout this work. The present data do not al-
low to detect differences between the individual transverse
size parameters.

We note that, leaving aside the intrinsic gluon and
charm components, the Fock state decomposition (1) al-
ready includes four independent wave functions that char-
acterize the light-quark contributions to the η and η′ me-
sons, each in principle with its own distribution amplitude,
transverse shape function and value at the origin. It is of
course a formidable task to determine all the parameters,
that enter the wave functions Ψ iP , completely from phe-
nomenological constraints. As already mentioned in the
introduction one needs additional assumptions in order to
simplify the analysis (see Sect. 4, 5).

3 Meson-photon transition form factor

We write the Pγγ∗-vertex (see Fig. 1) as

Γµ(q21 = 0, q22 = −Q2) = i e20 FPγ(Q
2) εµνκλ pν qκ1 ε

λ .

Following [7,8], we calculate the Pγ transition form fac-
tors (P = η, η′) for Q2 ≥ 1 GeV2 within the mHSA. In
that approach the transverse momentum dependence of
the hard scattering amplitude is retained, and Sudakov
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suppressions are taken into account in contrast to the
sHSA. Each quark term in (1) gives rise to an additive
contribution to the Pγ transition form factor which is
represented by a convolution of the corresponding wave
function, the hard scattering amplitude and a Sudakov
factor (i = 8, 1, c):

F iPγ(Q
2) =

∫ 1

0
dx

∫
d2b

4π
Ψ̂ iP (x,b) T̂ iP (x,b, Q)

× exp [−S(x,b, Q)] , (13)

where b, canonically conjugated to the transverse mo-
mentum, is the quark-antiquark separation in the trans-
verse configuration space. Ψ̂ iP and T̂ iP represent the Fouri-
er transforms of the wave functions defined in (1) and
the hard scattering amplitudes, respectively. To lowest or-
der of perturbative QCD, the hard scattering amplitudes
are to be calculated from the two Feynman graphs shown
in Fig. 2. For the light-quark contributions (i = 8, 1) one
finds

T iP (x,k⊥, Q) =
2
√

6Ci
xQ2 + k2

⊥ + x x̄M2
P

+ (x ↔ x̄) (14)

in the transverse momentum space. The charge factors
read C8 = (e2u+e2d−2e2s)/

√
6 and C1 = (e2u+e2d+e2s)/

√
3.

Since the masses MP of the η and η′ mesons are rather
large we allow for corresponding corrections in the hard
scattering amplitudes. Due to the symmetry of the distri-
bution amplitudes under x ↔ x̄ the two Feynman graphs
provide identical contributions. The Fourier transformed
amplitudes are proportional to K0(

√
xQ2 + xx̄M2

P b)
where K0 is the modified Bessel function of order zero.

The Sudakov factor exp[−S(x, b,Q)] takes into account
gluonic corrections not accounted for in the QCD evolu-
tion of the wave functions. In the Sudakov factor b plays
the role of an infrared cut-off; it sets up the interface be-
tween the non-perturbative soft gluon contributions – still
contained in the hadronic wave function – and perturba-
tive soft gluon contributions accounted for by the Sudakov
factor. The gliding factorization scale to be used in the
evolution of the wave functions is, hence, chosen to be
µF = 1/b. The Sudakov factor has been calculated by
Botts and Sterman [19] in next-to-leading-log approxima-
tion. The explicit form of the Sudakov function which has
been slightly improved, can, for instance, be found in [23].

The charm contribution to the Pγ transition form fac-
tor can be estimated in close analogy to the calculation of
the ηcγ form factor [24]. An important difference to the
light-quark case consists in the mass of the charm quark
(mc ' 1.5 GeV) that provides a second large scale in the
process. The hard scattering amplitude is therefore to be
modified accordingly. The distribution amplitude φcP is ex-
pected to behave similar to the ηc distribution amplitude
and should, in particular, exhibit a pronounced maximum
at x = 1/2. It therefore suffices to use the peaking approx-
imation φc = δ(x− 1/2). Including transverse momentum
corrections to O(k2

⊥/m
2
c), one finds for the charm contri-

bution the reasonable approximation

F cPγ(Q
2) =

4 e2c f
c
P

Q2 +M2
P /2 + 2m2

c + 2〈k2
⊥〉c , (15)

where, according to [24], a value of 710 MeV is used for
the r.m.s. transverse momentum of the charm quarks. De-
tails of this approximation and an assessment of its quality
can be found in [24]. Equation (15) possesses the highly
welcome feature that, except of the decay constants and
the r.m.s. transverse momentum, no further details of the
charm wave function are required. Furthermore it rather
represents an underestimate of the intrinsic charm contri-
bution: Going beyond the peaking approximation and/or
inserting a value of the r.m.s. transverse momentum closer
to the value of 370 MeV that we use for the light-quark
components, would even increase the magnitude of the
charm contribution.

The two-gluon components of the η and η′ mesons play
no direct role in the analysis of the transition form factors
since their coupling to photons is suppressed by the strong
coupling constant αs. Moreover, the formation of a pseu-
doscalar meson from two vector particles requires orbital
angular momentum. This implies a factor k⊥ in the cor-
responding spin-wave function that leads to an additional
suppression factor k2

⊥/Q
2 of the two-gluon contributions.

It is instructive to consider the asymptotic behavior
of the transition form factors. For lnQ2 → ∞ the Su-
dakov factor damps any contribution to the form fac-
tors except those from configurations with small quark-
antiquark separations. Contributions from such configu-
rations are actually considered in the sHSA. Hence, the
mHSA and the sHSA have the same asymptotic limit.
Since, for lnQ2 → ∞, any distribution amplitude evolves
into the asymptotic one, the limiting behavior of the tran-
sition form factors (for fcP = 0)

Q2 FPγ(Q2)
lnQ2→∞−→

√
2
3
f8
P +

4√
3
f1
P . (16)

is model-independent.

4 The octet-singlet mixing scheme

The most obvious way to reduce the number of parameters
and to make contact to phenomenology, is to simplify the
general ansatz (1) by adopting the usual SU(3)F octet-
singlet mixing scheme. Corresponding Fock state compo-
nents of the η and η′ mesons are then controlled by one and
the same wave function. The octet-singlet mixing scheme
is defined through the relations

Ψ8
η = Ψ8 cos θP , Ψ8

η′ = Ψ8 sin θP ,

Ψ iη = −Ψi sin θP , Ψ iη′ = Ψi cos θP , (i = 1, g, c)
(17)

for the valence Fock state wave functions defined in (1).
Equation (17) implies analogous relations between the de-
cay constants. For the light-quark wave functions, Ψ8 and
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Ψ1, we use the ansatz (2). All the properties of light-quark
wave functions discussed in Sect. 2 are valid for Ψ8 and Ψ1,
too. The octet-singlet mixing scheme is based on the con-
cept of octet (η8) and singlet (η1) mesons as SU(3)F basis
states from which, by a unitary transformation, the phys-
ical mesons arise. This concept implies that Fock state
components with singlet quantum numbers, in other words
all Fock state components of the η1 meson, contribute to
the η and η′ mesons through the relations in the second
line of (17).

Approximate SU(3)F symmetry tells us that the octet
and the pion wave functions cannot differ much from each
other. Due to the larger quark masses involved, the octet
distribution amplitude may, at the most, be slightly more
midpoint-concentrated, i.e. B8

2 < 0, than the pion one
which is well described by the asymptotic form [7]. The
singlet wave function is not related to the pion one by
symmetry. Since the binding mechanisms of the quarks in
the flavor octet and singlet channels are however similar,
we expect the light-quark singlet wave function Ψ1 to be
not too different from that of the pion. Thus, a reasonable
starting point of the analysis of transition form factors
is the assumption Bin = 0, ai = aπ (i = 1, 8; n ≥ 2).
This ansatz coincides with the one used in [8]. There are
still three parameters to be determined, the two decay
constants f1, f8 and the mixing angle. Admittedly, addi-
tional information is required for this task since the two
transition form factors do not suffice to fix these three pa-
rameters; for any value of the mixing angle an acceptable
fit to the data can be obtained.

A useful constraint is provided by the two-photon de-
cays of the η and η′ mesons. Generalizing the PCAC result
for the π0 → γγ (which is responsible for the constraint
(12)), one assumes that the axial vector currents can be
related via PCAC to the η and η′ fields (see e.g. [25])

∂µJ8
µ5(z) = f8

η M
2
η η(z) + f8

η′ M2
η′ η′(z) + . . .

∂µJ1
µ5(z) = f1

η M
2
η η(z) + f1

η′ M2
η′ η′(z) + . . . (18)

This leads to

Γ [η → γγ] =
9α2

16π3 M
3
η

[
C8 f

1
η′ − C1 f

8
η′

f1
η′ f8

η − f8
η′ f1

η

]2

,

Γ [η′ → γγ] =
9α2

16π3 M
3
η′

[
−C8 f

1
η + C1 f

8
η

f1
η′ f8

η − f8
η′ f1

η

]2

. (19)

The various decay constants appearing in (19) can be ex-
pressed in terms of f1, f8 and θP by means of (17). The
experimental values of the two-photon decay widths are
[26]

Γ [η → γγ] = (0.51 ± 0.026) keV ,
Γ [η′ → γγ] = (4.26 ± 0.19) keV . (20)

We do not include the value 0.324 ± 0.046 keV obtained
from the Primakoff production measurement for η → γγ.

Using the asymptotic distribution amplitudes as well
as universal transverse size parameters and ignoring an

eventual charm contribution, we fit the decay constants
f1 and f8 and the mixing angle to the transition form
factor data above 1 GeV2 [1,2,27,28] and the two-photon
decay widths. The results of this excellent fit are shown
in Table 1 and Fig. 3. Note the strong deviation from the
dimensional counting behavior, Q2 FPγ ' const., at small
Q2 in our approach. This is due to the inclusion of trans-
verse momenta which lead to power corrections (1/Q2n).
In this respect the mHSA differs clearly from the sHSA. It
is interesting to compare our values for f1, f8 and θP with
those obtained from chiral perturbation theory (ChPT)
[14,15]

θP ' −20◦ f8 = 1.28 fπ f1 ' 1.1 fπ . (21)

Whereas f8 is theoretically on sound grounds by its rela-
tion to the pion and kaon decay constants

f8 =

√
4
3
f2
K − 1

3
f2
π = 1.28 fπ , (22)

the other two parameters are subject to rather large phe-
nomenological and theoretical uncertainties. For instance,
f1 may acquire scale dependent corrections of order 1/Nc
due to the gluon anomaly [16]. Our fitted set of param-
eters, which is rather similar to that one quoted in [8],
differs from (21) in the values of the mixing angle and the
octet decay constant. The latter discrepancy is rather se-
rious since, as we said, f8 is well determined from ChPT
(22). In phenomenological analyses based on the octet-
singlet mixing scheme frequently (e.g. [8,29,30]), but not
always (e.g. [31]), values for the mixing angle are obtained
that are smaller in modulus than the ChPT value.

There is another phenomenological test of our parame-
ters. According to [32], the radiative J/ψ → Pγ decays are
dominated by non-perturbative gluonic matrix elements:

RJ/ψ =
Γ [J/ψ → η′γ]
Γ [J/ψ → ηγ]

'
∣∣∣∣∣ 〈0|GG̃|η′〉
〈0|GG̃|η〉

∣∣∣∣∣
2 (

kη′

kη

)3

(23)

where kP = MJ/ψ (1 − M2
P /M

2
J/ψ)/2 being the three-

momentum of the P meson in the rest frame of the de-
caying J/ψ meson (with mass MJ/ψ). G is the gluonic
field-strength tensor and G̃ its dual. We stress that these
gluonic matrix elements are not related to the two-gluon
components of the η and η′ mesons appearing in (1) and
(17). The light-quark contributions to these decays, while
responsible for the J/ψ → πγ decay, are negligible small.
The connection between the decay widths Γ [J/ψ →
η(η′)γ] and the gluonic matrix element, although heav-
ily used in many analyses, has been occasionally criticized
[33]. We only use a ratio of widths where most (or part)
of the uncertainties may cancel. However, in account of
the possible remaining uncertainties in (23) we do not in-
clude RJ/ψ in our fit, but merely use it as an additional
cross-check. Since the gluonic contributions have singlet
quantum numbers, (23) reduces to

RJ/ψ = cot2 θP

(
kη′

kη

)3

(24)
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Table 1. Results of the χ2 fit to the ηγ and η′γ transition form factors and
the two-photon decay widths in the octet-singlet mixing scheme (ai = aπ,
Bi2 = 0, fcP = 0). For comparison we also show results obtained from the
parameter set OSS (see text)

θP f8/fπ f1/fπ χ2/dof Γη→γγ Γη′→γγ RJ/ψ

FIT –15.1◦ 0.91 1.14 26/33 0.50 keV 4.10 keV 11.2
OSS –22.2◦ 1.28 1.07 238/34 0.51 keV 4.26 keV 4.9
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Fig. 3. Results for the ηγ and
η′γ transition form factors in
the octet-singlet scheme (ai =
aπ, fcP = 0). For comparison we
also show results obtained from
the parameter set OSS. Data are
taken from [1,2,27,28]

within the octet-singlet mixing scheme. Quite generally,
the relation (24) may be regarded as an immediate conse-
quence of singlet dominance and is, in so far, independent
of (23). As inspection of Table 1 reveals, a value of −15◦
for the mixing angle is in conflict with the experimental
value of 5.0 ± 0.8 [26] for RJ/ψ.

The conflict between ChPT and the form factor analy-
sis may be further elucidated by the following test: Keep-
ing f8 fixed at the ChPT value (22), we can determine θP
and f1 from the two-photon widths (19). The resulting set
of values, termed OSS, is listed in Table 1. It is qualita-
tively and quantitatively equivalent to the parameter set
(21). Using the set OSS, we evaluate the transition form
factors again and arrive at very bad results (see Table 1
and Fig. 3). The ratio RJ/ψ, on the other hand, acquires
a reasonable value.

One may hold the use of the asymptotic distribution
amplitudes responsible for the apparent discrepancy be-
tween ChPT and the form factor analysis. In order to
investigate this possibility we take the OSS set of param-
eters, keep ai = aπ as before and fit the two expansion co-
efficients Bi2 (i = 8, 1) to the transition form factor data.
We find B8

2(µ0) = −0.86 and B1
2(µ0) = 0.13. Thus, the

demand of the ChPT values (21 or OSS) for the decay con-
stants and the mixing angle still leads to a good fit to the
transition form factors, the two-photon decay widths and
RJ/ψ, but at the expense of an octet distribution ampli-
tude which is very different from the asymptotic one. Such
a strong modification of φ8(x) seems unlikely, considering
the quality of SU(3)F symmetry. It is also at variance with
the recent estimate of B8

2 (' −0.04) obtained in the anal-
ysis of χcJ → ηη decays (J = 0, 2) [11]. We do not vary
the values of the transverse size parameters since their in-

fluence on the transition form factor is rather small. They
merely influence the curvature of the transition form fac-
tors at smaller values of momentum transfer.

From these considerations we conclude that the octet-
singlet scheme for the η-η′ system, although quite attrac-
tive due to its simplicity in phenomenological analyses,
seems to be inadequate and should perhaps be given up
in favor of a more general description of the η-η′ system.
We are going to investigate such a scheme in the next
section.

5 The two-angle mixing scheme

In order to allow for four independent light quark decay
constants (i.e. four independent wave functions at the ori-
gin of configuration space) we define now a new mixing
scheme through the relations

Ψ8
η = Ψ8 cos θ8 , Ψ8

η′ = Ψ8 sin θ8 ,
Ψ iη = −Ψi sin θ1 , Ψ iη′ = Ψi cos θ1 , (i = 1, g, c) .

(25)

Note that in contrast to (17) the scheme (25) does
not make use of the concept of octet and singlet mesons
as SU(3)F basis states. The analogous relations of the
light-quark decay constants f iP have been introduced by
Leutwyler [16] and, in a somewhat different parameteri-
zation, by Kiselev and Petrov [25].

Again, we are using the asymptotic distribution ampli-
tudes and the universal transverse size parameters in the
analysis of the transition form factors. Since we now have
to determine one more parameter we need one more con-
straint. Thus, besides the two-photon decay widths (19),
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Table 2. Results of the χ2 fit to the ηγ and η′γ transition form factors and the
two-photon widths in the two-angle mixing scheme (ai = aπ, Bi2 = 0, fcP = 0).
Underlined parameters are kept fixed in the fit. For comparison we also show results
obtained from the parameter set TAS (see text)

θ8 θ1 f8/fπ f1/fπ χ2/dof Γη→γγ Γη′→γγ RJ/ψ

FIT –22.2◦ –9.1◦ 1.28 1.20 26/33 0.50 keV 4.11 keV 5.1
TAS –22.2◦ –5.9◦ 1.28 1.22 41/34 0.51 keV 4.26 keV 6.2
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Fig. 4. Results for the ηγ and
η′γ transition form factors in
the two-angle mixing scheme
(ai = aπ, fcP = 0). For com-
parison we also show results ob-
tained from the parameter set
TAS. Data are taken from [1,2,
27,28]

we use the theoretically reliable ChPT relation (22), i.e.
we take f8 = 1.28 fπ. The results of that fit are shown in
Table 2 and Fig. 4. As for the octet-singlet mixing scheme
the results are very good and agree now quite well with
a recent determination of these parameters from ChPT
within the new mixing scheme [16]:

θ8 = −20.5◦ , θ1 ' −4◦ ,
f8 = 1.28 fπ , f1 ' 1.25 fπ . (26)

The only noticeable deviation between (26) and the fitted
parameters is to be observed for the angle θ1 which, within
ChPT, is related to the SU(3)F breaking effects in the
decay constants of the pseudoscalar octet [16]

sin(θ1 − θ8) ' 2
√

2 (f2
K − f2

π)
3 f2

8
. (27)

This approximately valid relation leads to a difference θ1−
θ8 of the mixing angles of about 16◦, larger but, in regard
to the uncertainties in (27), not in conflict with the the
fitted value of 13◦.

The ratio of the J/ψ → Pγ decay widths can still be
cast into the form (24), but the angle appearing there is
now to be understood as the mixing angle of the non-
perturbative gluon contribution which may – and should
– differ from the angle θ1 defined in (25). In [25,30] this
angle, and hence RJ/ψ, has been estimated using PCAC
and taking into account a substantial non-zero strange
quark mass (whereas mu,md ' 0). This is well in the
spirit of the new mixing scheme (25) where large SU(3)F
breaking effects induce the substantial difference between
the two mixing angles θ8 and θ1 (27). In our notation the

result of [25] reads

RJ/ψ =

∣∣∣∣∣M
2
η′ (f8

η′ +
√

2 f1
η′)

M2
η (f8

η +
√

2 f1
η )

∣∣∣∣∣
2 (

kη′

kη

)3

(28)

Inserting the fitted values of the parameters quoted
in Table 2 into (28), one obtains a value of 5.1 for RJ/ψ
in perfect agreement with experiment. For comparison, we
also show results in Table 2 and in Fig. 4 that are evaluated
with a set of parameters determined from the two ChPT
relations (22) and (27) as well as from the two-photon
decay widths (19). This set of parameters, termed TAS,
is, not surprisingly, close to the fitted values as well as
to the ChPT values (26). It leads to a somewhat worse
fit but is not in severe disagreement with the transition
form factor data3. Also the value of RJ/ψ is only about
one standard deviation above the experimental result. The
agreement with the transition form factor data can be
improved in this case by allowing for non-zero Gegenbauer
coefficients. Values of B8

2(µ0) ' 0.25 and B1
2(µ0) ' 0 lead

to a reasonable fit of the data.
Recently, substantial intrinsic charm in the η′ meson

has been proposed [17,18] in order to explain the large
branching ratios of the decays B → Kη′ and B → Xsη

′.
From the experimental measurements the authors of [17]
obtain an absolute value of 140 MeV for the charm de-
cay constant f cη′ (see (5)). This surprisingly large value is
claimed to be justified within a QCD sum rule analysis.
Another analysis of B decays [18] yields the more mod-
erate value of −50 MeV for fcη′ . If fcη′ is that large, the

3 The set of parameters quoted in [25] differs from the sets
(26), TAS and the fitted one (see Table 2) substantially and is
not consistent with the ηγ and η′γ transition form factors
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Fig. 5. Sample results for the
ηγ and η′γ transition form fac-
tors obtained from light quark
(with the parameter set FIT
quoted in Table 2, B8

2 = 0 and
ai = aπ) and charm contribu-
tions. Data are taken from [1,2,
27,28]

radiative decay J/ψ → η′γ may be dominated by a con-
tribution where the cc̄ pair runs from the J/ψ to the η′
meson instead of being annihilated. On that supposition
the width of that process can be calculated along the same
lines as that one for the J/ψ → ηcγ decay. The ratio of
the two decay widths reads

Γ [J/ψ → η′γ]
Γ [J/ψ → ηcγ]

= κ2
(
fcη′

fηc

)2 (
kη′

kηc

)3

(29)

in analogy to (24). κ represents the ratio of the J/ψ-η′
and J/ψ-ηc wave function overlaps. In [34] κ was assumed
to be unity, i.e. both the η′ and the ηc mesons basically
behave like non-relativistic bound states of heavy quarks
with about the same overlap with the J/ψ wave function
(each close to unity). From the experimental values of the
decay widths one then estimates |f cη′ | = 6 MeV in contra-
diction to the initial assumption. In regard to the large
binding energy required for the cc̄ component of the η′
meson, a value of κ significantly less than unity seems not
implausible. Consequently, a value larger than 6 MeV for
fcη′ cannot really be excluded by means of (29).

We are now going to estimate the size of the intrin-
sic charm. Since the effect of the charm component of the
η meson is suppressed by the small singlet mixing angle
(fcη = − tan θ1 fcη′ , see (25)) we can mainly concentrate
ourselves on the η′γ transition form factor in the follow-
ing discussion. The large charm quark mass effectuates a
strong suppression of the charm contribution to the η′γ
form factor at small values of Q2 (see (15)); the main ef-
fect of it shows up for, say, Q2 & 4 GeV2. The charm
contribution therefore approaches its asymptotic behav-
ior with a much slower rate than the light-quark contribu-
tions. This difference in the curvature is the crucial point
that allows to disentangle the charm and the light-quark
contributions. In order to determine the range of allowed
f cη′ values, we fit this parameter as well as B1

2 to the η′γ
and ηγ form factors, keeping the parameter set FIT given
in Table 2 fixed. f cη is determined by means of (25). The
variation of B1

2 changes the strength of the singlet part
of the light-quark contributions, that is dominant in the,
for these considerations, most important η′ case, and thus
makes space for a charm contribution. We could have freed
f1 instead of B1

2 , but this procedure would have the dis-

advantage of eventually destroying the agreement of our
results with ChPT and the good description of the two-
photon decay widths. The numerical analysis yields the
following range of allowed values for fcη′

−65 MeV ≤ fcη′ ≤ 15 MeV (30)

The corresponding changes of B1
2 are moderate (see Fig. 5)

and do not lead to implausible singlet distribution ampli-
tudes. The results for the form factors obtained with the
values 15 and −65 MeV for fcη′ are shown in Fig. 5. For
comparison, results with ±140 MeV are also shown in this
figure. The latter two values, which require drastic changes
of B1

2 , lead to results for the η′γ transition form factor
in clear conflict with the data above 4 GeV2. More re-
strictive bounds on f cη′ than (30) require more form factor
data above 4 GeV2. We stress that the approximation (15)
rather underestimates the effect of intrinsic charm (see
Sect. 3). Finally, we comment on RJ/ψ and emphasize that
this quantity is not included in our fits; it is only used as
an accompanying test of the results. With the large range
(30) of allowed f cη′ values the gluon dominance, assumed
up to now for the J/ψ → ηγ and J/ψ → η′γ decays, may
not be true anymore, and, hence, the mentioned success-
ful test is perhaps accidental. Whether the J/ψ → η(η′)γ
decay can reliably be explained by intrinsic charm in the
η(η′) meson remains to be shown.

6 Conclusions

The modified hard scattering approach is shown to pro-
vide a consistent description of the ηγ and η′γ transition
form factors over a wide range of the momentum trans-
fer 1 GeV2 ≤ Q2 ≤ 15 GeV2, where experimental data
is now available. It is to be emphasized that this result
is not trivial at all: The rather strong deviations from
the dimensional counting behavior (Q2 FPγ ' const.) at
small momentum transfer appear as a consequence of the
transverse momentum dependence and the Sudakov sup-
pressions included in the mHSA. We have included the
two-photon decay widths of the η and η′ mesons in the
analysis in order to reduce the degrees of freedom. The
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ratio RJ/ψ of the Jψ → η′γ and J/ψ → ηγ decay widths
is merely used as an additional test.

Our analysis of the transition form factors allows us to
extract interesting information on the η and η′ wave func-
tions. Our starting point is the assumption that, like the
pion, the light-quark components of the η and η′ mesons
are described by the asymptotic form of the distribution
amplitude and a Gaussian transverse momentum depen-
dence with a universal transverse size parameter, ai = aπ
(i = 1, 8). The wave functions at the origin of the config-
uration space, or the corresponding decay constants, are
considered as free parameters to be determined from the
analysis. We found hints at an inadequacy of the conven-
tional octet-singlet scheme used to describe the mixing
and the SU(3)F symmetry breaking in the η-η′ system.
The fit yields values of the mixing angle and the octet de-
cay constant which substantially deviate from the ChPT
values. Moreover, the fitted set of parameters, quoted in
Table 1, does not pass the RJ/ψ test. Agreement with
ChPT can only be obtained at the expense of large devi-
ations of the octet wave function from the pion one. With
regard to the quality of SU(3)F symmetry this seems to
be unrealistic.

In contrast to the conventional octet-singlet mixing
scheme, the more general two-angle mixing scheme [16,25]
meets all requirements: It provides a very good description
of the transition form factors with the asymptotic form of
the distribution amplitudes. The set of parameters

θ8 = −22.2◦ , θ1 ' −9.1◦ ,
f8 = 1.28 fπ , f1 ' 1.20 fπ (31)

is in reasonable agreement with the recent ChPT results
obtained within that new mixing scheme [16] and repro-
duces the two-photon decay widths of the η and η′ mesons
as well as the ratio RJ/ψ. The parameter set (31) im-
plies the asymptotic behavior of the transition form fac-
tors Q2 FPγ → 184 MeV and 306 MeV for the η and η′
cases, respectively. Thus, numerically the ηγ and πγ tran-
sition form factor have the same asymptotic values.

Finally, we have also investigated whether a large in-
trinsic charm component in the η and η′ mesons is al-
lowed by the transition form factor data. From our anal-
ysis we estimate the range of allowed fcη′ values to be:
−65 MeV ≤ f cη′ ≤ 15 MeV. Values as large as 140 MeV,
as suggested in [17], seem to be excluded. More restrictive
bounds on fcη′ require more transition form factor data
above 4 GeV2.
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